A New Perspective on Convex Relaxations of Sparse SVM
نویسندگان
چکیده
This paper proposes a convex relaxation of a sparse support vector machine (SVM) based on the perspective relaxation of mixed-integer nonlinear programs. We seek to minimize the zero-norm of the hyperplane normal vector with a standard SVM hinge-loss penalty and extend our approach to a zeroone loss penalty. The relaxation that we propose is a second-order cone formulation that can be efficiently solved by standard conic optimization solvers. We compare the optimization properties and classification performance of the second-order cone formulation with previous sparse SVM formulations suggested in the literature.
منابع مشابه
On the Statistical Limits of Convex Relaxations: A Case Study
Many high dimensional sparse learning problems are formulated as nonconvex optimization. A popular approach to solve these nonconvex optimization problems is through convex relaxations such as linear and semidefinite programming. In this paper, we study the statistical limits of convex relaxations. Particularly, we consider two problems: Mean estimation for sparse principal submatrix and edge p...
متن کاملStatistical Limits of Convex Relaxations
Many high dimensional sparse learning problems are formulated as nonconvex optimization. A popular approach to solve these nonconvex optimization problems is through convex relaxations such as linear and semidefinite programming. In this paper, we study the statistical limits of convex relaxations. Particularly, we consider two problems: Mean estimation for sparse principal submatrix and edge p...
متن کاملJust Relax: Convex Programming Methods for Subset Selection and Sparse Approximation
Subset selection and sparse approximation problems request a good approximation of an input signal using a linear combination of elementary signals, yet they stipulate that the approximation may only involve a few of the elementary signals. This class of problems arises throughout electrical engineering, applied mathematics and statistics, but small theoretical progress has been made over the l...
متن کاملSparse Topical Coding
We present sparse topical coding (STC), a non-probabilistic formulation of topic models for discovering latent representations of large collections of data. Unlike probabilistic topic models, STC relaxes the normalization constraint of admixture proportions and the constraint of defining a normalized likelihood function. Such relaxations make STC amenable to: 1) directly control the sparsity of...
متن کاملConvex Relaxations for Subset Selection
We use convex relaxation techniques to produce lower bounds on the optimal value of subset selection problems and generate good approximate solutions. We then explicitly bound the quality of these relaxations by studying the approximation ratio of sparse eigenvalue relaxations. Our results are used to improve the performance of branch-and-bound algorithms to produce exact solutions to subset se...
متن کامل